Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Medicina (Kaunas) ; 60(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399576

RESUMO

Background and Objectives: Ascites, often associated with liver cirrhosis, poses diagnostic challenges, particularly in detecting bacterial infections. Traditional methods have limitations, prompting the exploration of advanced techniques such as 16S rDNA next-generation sequencing (NGS) for improved diagnostics in such low-biomass fluids. The aim of this study was to investigate whether the NGS method enhances detection sensitivity compared to a conventional ascites culture. Additionally, we aimed to explore the presence of a microbiome in the abdominal cavity and determine whether it has a sterile condition. Materials and Methods: Ten patients with clinically suspected spontaneous bacterial peritonitis (SBP) were included in this study. A traditional ascites culture was performed, and all ascites samples were subjected to 16S ribosomal RNA gene amplification and sequencing. 16S rRNA gene sequencing results were interpreted by comparing them to positive and negative controls for each sample. Results: Differential centrifugation was applied to all ascites samples, resulting in very small or no bacterial pellets being harvested. The examination of the 16S amplicon sequencing libraries indicated that the target amplicon products were either minimally visible or exhibited lower intensity than their corresponding negative controls. Contaminants present in the reagents were also identified in the ascites samples. Sequence analysis of the 16S rRNA gene of all samples showed microbial compositions that were akin to those found in the negative controls, without any bacteria isolated that were unique to the samples. Conclusions: The peritoneal cavity and ascites exhibit low bacterial biomass even in the presence of SBP, resulting in a very low positivity rate in 16S rRNA gene sequencing. Hence, the 16S RNA sequencing method does little to enhance the rate of positive samples compared to traditional culture methods, including in SBP cases.


Assuntos
Ascite , Peritonite , Humanos , RNA Ribossômico 16S/genética , Ascite/genética , Peritonite/diagnóstico , Peritonite/microbiologia , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Oncogene ; 43(10): 714-728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225339

RESUMO

Cisplatin resistance is a major cause of therapeutic failure in patients with high-grade serous ovarian cancer (HGSOC). Long noncoding RNAs (lncRNAs) have emerged as key regulators of human cancers; however, their modes of action in HGSOC remain largely unknown. Here, we provide evidence to demonstrate that lncRNA Platinum sensitivity-related LncRNA from Ascites-Derived Exosomes (PLADE) transmitted by ascites exosomes enhance platinum sensitivity in HGSOC. PLADE exhibited significantly decreased expression in ascites exosomes and tumor tissues, as well as in the corresponding metastatic tumors from patients with HGSOC cisplatin-resistance. Moreover, HGSOC patients with higher PLADE expression levels exhibited longer progression-free survival. Gain- and loss-of-function studies have revealed that PLADE promotes cisplatin sensitivity by suppressing cell proliferation, migration and invasion, and enhancing apoptosis in vitro and in vivo. Furthermore, the functions of PLADE in increasing cisplatin sensitivity were proven to be transferred by exosomes to the cultured recipient cells and to the adjacent tumor tissues in mouse models. Mechanistically, PLADE binds to and downregulates heterogeneous nuclear ribonucleoprotein D (HNRNPD) by VHL-mediated ubiquitination, thus inducing an increased amount of RNA: DNA hybrids (R-loop) and DNA damage, consequently promoting cisplatin sensitivity in HGSOC. Collectively, these results shed light on the understanding of the vital roles of long noncoding RNAs in cancers.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Animais , Camundongos , Feminino , Humanos , RNA Longo não Codificante/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ascite/genética , Estruturas R-Loop , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
3.
Discov Med ; 35(178): 877-886, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811626

RESUMO

BACKGROUND: Adolescent ovarian cancer (OC) has high malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of various malignancies, but their role in adolescent OC remains poorly understood. This study aims to assess the modulatory role of Exosome-transmitted lncRNA Actin filament-associated protein 1 Antisense RNA 1 (AFAP1-AS1) on the activity of OC cells. METHODS: We recruited a cohort of 40 adolescent patients diagnosed with OC and a control group of 40 healthy individuals. Serum samples were collected from both groups prior surgical intervention. Exosomes from peripheral blood and ascites were collected via differential centrifugation. The expression levels of AFAP1-AS1 in OC tissues and cell lines (IOSE-80, CAOV3, and SKOV3) were quantified using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The exosomal particle size and surface markers were characterized through nanoparticle tracking analysis and transmission electron microscopy. Furthermore, siRNA-mediated knockdown of AFAP1-AS1 was performed in IOSE-80, CAOV3, and SKOV3 cell lines. Functional assays, including wound-healing experiments and Transwell migration assays, were conducted to evaluate cellular migration and metastasis. RESULTS: Our findings demonstrate that the expression of AFAP1-AS1 is significantly upregulated in OC patients' serum exosomes and ascitic fluid, correlating with unfavorable pathological features such as advanced federation international of gynecology and obstetrics (FIGO) stage and larger tumor diameter. In-vitro experiments revealed that OC cell lines and primary human OC cells showed enhanced proliferation and metastasis when exposed to ascites-derived exosomes enriched in AFAP1-AS1. Importantly, we observed that AFAP1-AS1 can be transmitted to neighboring cells via exosomal pathways. Additionally, exosomes isolated from ascites treated with siRNA targeting AFAP1-AS1 can inhibit cellular migration and invasion. CONCLUSIONS: Our data provide evidence for the oncogenic role of AFAP1-AS1, which is transmitted via exosomes. This finding has significant implications for understanding the molecular mechanisms of AFAP1-AS1 in the pathogenesis of adolescent ovarian cancer.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Adolescente , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ascite/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
4.
J Gastrointestin Liver Dis ; 32(2): 206-215, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345611

RESUMO

BACKGROUND AND AIMS: Despite limited sensitivity, the gold standard for the diagnosis of malignant cells in ascites is still cytology. The aim of this prospective proof-of-principle study was to evaluate DNA methylation as a molecular tool for the differential diagnosis of benign and malignant ascites. METHODS: A cohort of 79 patients with malignant and non-malignant ascites was prospectively enrolled. Ascites was assessed by cytopathological and laboratory examination. Cell pellets obtained by centrifugation were analyzed for differences in DNA methylation of of long interspersed nuclear element-1 (LINE-1) and microRNA-137. Quantitative determination of methylation in bisulfite-converted DNA was performed by pyrosequencing. In a subsequent stage, we compared our data to previously published data in the field following systematic review of the literature. RESULTS: Methylation status of studied LINE-1 and microRNA-137 could be reliably detected in all samples. Systematic evaluation revealed reliable reproducibility with satisfactory short- and long-term stability against degradation. Ascites from patients with a malignancy had a significantly higher methylation level of microRNA-137 compared with patients without tumor disease, whereas patients with peritonitis had significantly decreased methylation of microRNA-137. In contrast, differences in the measurement of the methylation status of LINE-1 could only be detected between patients with portal hypertension and a combination of malignant and infectious ascites. Inflammatory cells reflecting peritonitis correlated to DNA methylation changes. CONCLUSIONS: Analysis of DNA methylation in ascites is technically feasible, well reproducible and may lead to identification of potential biomarkers for peritoneal carcinomatosis and other conditions. Inflammatory cells due to peritonitis may also be associated with DNA methylation changes and need to be considered in future studies. Profiling studied under standardized conditions will be needed to identify the appropriate biomarkers for differential diagnosis of ascites.


Assuntos
MicroRNAs , Neoplasias Peritoneais , Peritonite , Humanos , Ascite/etiologia , Ascite/genética , Neoplasias Peritoneais/diagnóstico , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/complicações , Metilação de DNA , Estudos Prospectivos , Reprodutibilidade dos Testes , Biomarcadores , Peritonite/diagnóstico , Peritonite/genética , Peritonite/complicações , MicroRNAs/genética
5.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015760

RESUMO

BACKGROUND: High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy characterized by resistance to chemotherapy and high rates of recurrence. HGSC tumors display a high prevalence of tumor suppressor gene loss. Given the type 1 interferon regulatory function of BRCA1 and PTENgenes and their associated contrasting T-cell infiltrated and non-infiltrated tumor immune microenvironment (TIME) states, respectively, in this study we investigated the potential of stimulator of interferon genes (STING) pathway activation in improving overall survival via enhancing chemotherapy response, specifically in tumors with PTEN deficiency. METHODS: Expression of PTEN protein was evaluated in tissue microarrays generated using pretreatment tumors collected from a cohort of 110 patients with HGSC. Multiplex immunofluorescence staining was performed to determine spatial profiles and density of selected lymphoid and myeloid cells. In vivo studies using the syngeneic murine HGSC cell lines, ID8-Trp53 -/-; Pten -/- and ID8-Trp53 -/-; Brca1 -/-, were conducted to characterize the TIME and response to carboplatin chemotherapy in combination with exogenous STING activation therapy. RESULTS: Patient tumors with absence of PTEN protein exhibited a significantly decreased disease specific survival and intraepithelial CD68+ macrophage infiltration as compared with intact PTEN expression. In vivo studies demonstrated that Pten-deficient ovarian cancer cells establish an immunosuppressed TIME characterized by increased proportions of M2-like macrophages, GR1+MDSCs in the ascites, and reduced effector CD8+ cytotoxic T-cell function compared with Brca1-deficient cells; further, tumors from mice injected with Pten-deficient ID8 cells exhibited an aggressive behavior due to suppressive macrophage dominance in the malignant ascites. In combination with chemotherapy, exogenous STING activation resulted in longer overall survival in mice injected with Pten-deficient ID8 cells, reprogrammed intraperitoneal M2-like macrophages derived from Pten-deficient ascites to M1-like phenotype and rescued CD8+ cytotoxic T-cell activation. CONCLUSIONS: This study reveals the importance of considering the influence of cancer cell intrinsic genetic alterations on the TIME for therapeutic selection. We establish the rationale for the optimal incorporation of interferon activating therapies as a novel combination strategy in PTEN-deficient HGSC.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Camundongos , Feminino , Animais , PTEN Fosfo-Hidrolase/genética , Ascite/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Antineoplásicos/uso terapêutico , Genótipo , Interferons , Microambiente Tumoral/genética
6.
Nat Commun ; 14(1): 822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788228

RESUMO

Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Ascite/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/patologia , Neoplasias Gástricas/patologia
7.
Hematology ; 28(1): 2164449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36657019

RESUMO

OBJECTIVE: Long non-coding RNAs (lncRNAs) are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in extramedullary disease of multiple myeloma (EMD), we analyzed the expression profile of lncRNAs in EMD. METHODS: Three pairs of EMD patients and their intramedullary MM cells were screened by microarray first. We extracted data from gene chips and made an identification of lncRNAs and mRNAs with significant differences between EMD group and non EMD group. WGCNA confirmed the EMD related gene module and drew a heat map to further determine the key gene lncRNA-NEAT1. In the meantime, bone marrow and extramedullary samples (hydrothorax and ascites) were collected from 2 MM patients and subjected to single-cell RNA-seq. Single cell Transcriptome analysis was conducted to verify the gene expression difference of malignant plasma cells derived from intramedullary and extramedullary. Then we verified high expression level of lncRNA-NEAT1 in EMD patients by using quantitative real-time PCR (qRT-PCR) and analyzed the correlation between expression patterns and survival and molecular genetics analysis of the LncRNA (NEAT1) involved in MM patients. At last, cell experiments were conducted to observe the effects of down-regulation of NEAT1on the proliferation, cell cycle and PTEN pathway related proteins of multiple myeloma cell lines U266 and RPMI8226. RESULTS: We identified one of the EMD related key gene is lncRNA-NEAT1. Compared with patients without extramedullary lesions, intramedullary MM cells in EMD patients expressed NEAT1 highly. The outcome of parallel single-cell RNA sequencing (RNA-seq) revealed NEAT1 level of plasma cells came from pleural effusion /ascites increased significantly compared with myeloma-stricken bone marrow. By survival and molecular genetic analysis, NEAT1 gene expression was not associated with OS and PFS in MM patients. However, the expression of NEAT1 is related to adverse therapeutic reactions and the progression of MM. We found that the expressions of NEAT1 were negatively associated with albumin levels and were positively associated with gain of chromosome 1q, IGH-CCND1, IGH@-FGFR3/WHSC1,and IGH-MAF gene fusion, respectively. At the level of cell experiment, CCK-8, soft agar clone formation experiment and CFSE staining showed that down regulating NEAT1 could inhibit the proliferation of U266 and RPMI8226 cells; Cell cycle detection showed that down-regulation of NEAT1 would interfere with the cell cycle process, and RPMI 8226 cells were blocked in G1 phase. Western blot analysis showed that when the expression of NEAT1 was down regulated in U266 and RPMI 8226 cells, the expression of PTEN and p-PTEN (phosphorylated phosphatase and tensin homologue) was up-regulated, and the expression of PI3K, p-PI3K (human phosphorylated inositol 3 kinase), Akt, p-Akt (phosphorylated protein kinase B). DISCUCCION AND CONCLUSION: This study provides novel insights into the lncRNA-NEAT1 and reveals that NEAT1 maybe a potential lncRNA biomarkers in EMD.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Ascite/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Mieloma Múltiplo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Genes (Basel) ; 13(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36553542

RESUMO

Epithelial ovarian cancer (EOC) is the main cause of mortality among gynecological malignancies worldwide. Although patients with EOC undergo aggregate treatment, the prognosis is often poor. Peritoneal malignant ascites is a distinguishable clinical feature in EOC patients and plays a pivotal role in tumor progression and recurrence. The mechanisms of the tumor microenvironment (TME) in ascites in the regulation of tumor progression need to be explored. We comprehensively analyzed the transcriptomes of 4680 single cells from five EOC patients (three diagnostic samples and two recurrent samples) derived from Gene Expression Omnibus (GEO) databases. Batch effects between different samples were removed using an unsupervised deep embedding single-cell cluster algorithm. Subcluster analysis identified the different phenotypes of cells. The transition of a malignant cell state was confirmed using pseudotime analysis. The landscape of TME in malignant ascites was profiled during EOC progression. The transformation of epithelial cancer cells into mesenchymal cells was observed to lead to the emergence of related anti-chemotherapy and immune escape phenotypes. We found the activation of multiple biological pathways with the transition of tumor-associated macrophages and fibroblasts, and we identified the infiltration of CD4+CD25+ T regulatory cells in recurrent samples. The cell adhesion molecules mediated by integrin might be associated with the formation of the tumorsphere. Our study provides novel insights into the remodeling of the TME heterogeneity in malignant ascites during EOC progression, which provides evidence for identifying novel therapeutic targets and promotes the development of ovarian cancer treatment.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Transcriptoma/genética , Ascite/genética , Microambiente Tumoral/genética , Neoplasias Ovarianas/patologia
9.
J Transl Med ; 20(1): 201, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538537

RESUMO

PURPOSE: As a common complication of epithelial ovarian cancer (EOC), malignant ascites contributes to the peritoneal metastasis of EOC. CircRNAs play essential roles in tumor metastasis. However, no circRNAs have been reported to be involved in EOC peritoneal metastasis via ascites. METHODS: Total of 22 samples from 9 EOC patients containing primary lesions (T), tumor cells from ascites (ASC), and metastatic lesions (M) were included for RNA sequencing to identify differentially expressed circRNAs and mRNAs among different tumors. Bioinformatic analyses, including single-sample Gene Set Enrichment Analysis and soft cluster analysis, were performed to find circRNAs potentially correlated with ascitic metastasis. Wound healing and transwell analysis were performed to evaluate tumor cells metastasis in vitro. Quantitative real-time PCR and western-blot were used for gene expression evaluation. RESULTS: According to transcriptomic analysis, ASC showed mesenchymal phenotype while T and M showed epithelial phenotype. 10 circRNAs were differentially expressed among ASC, T, and M. Among them, hsa_circ_0000497 and hsa_circ_0000918 were significantly up-regulated in ASC. Functional analysis showed that both hsa_circ_0000497 and hsa_circ_0000918 promoted metastasis of EOC via epithelial-mesenchymal transition (EMT) in vitro. The regulatory network construction identified 8 miRNAs and 19 mRNAs, and 7 miRNAs and 17 mRNAs as potential downstream target genes of hsa_circ_0000497 and hsa_circ_0000918, respectively, which may play pivotal roles in EOC ascitic metastasis. CONCLUSIONS: circRNAs (hsa_circ_0000497 and hsa_circ_0000918) contribute to metastasis of EOC via ascites by regulating EMT. These circRNAs may serve as novel potential therapeutic targets or prognostic biomarkers for EOC peritoneal metastasis.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Neoplasias Peritoneais , Ascite/genética , Carcinoma Epitelial do Ovário/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/genética , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Cancer Lett ; 542: 215735, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35569696

RESUMO

Ovarian cancer is mostly diagnosed at advantaged stages due to the lack of early diagnostic biomarkers. The common metastasis pattern is characterized by peritoneal dissemination with a formation of malignant ascites. Extracellular vesicles (EVs) are emerging as promising clinical biomarkers in liquid biopsy. Here, we aimed to investigate robust liquid biopsy-based EV miRNA biomarkers for ovarian cancer diagnosis and metastasis regulation. EVs were isolated from malignant ascites and plasma of ovarian cancer patients as well as the benign control counterparts of patients with benign gynecologic diseases. EV small RNA sequencing identified a panel of eight miRNAs (miR-1246, miR-1290, miR-483, miR-429, miR-34b-3p, miR-34c-5p, miR-145-5p, miR-449a) based on dysregulated miRNAs overlapped in the ascites and plasma subset. The ovarian cancer EV miRNA (OCEM) signature developed based on these eight miRNAs demonstrated high diagnostic accuracy in our in-house dataset and multiple public datasets across diverse clinical samples (blood, tissue and urine). In addition, malignant ascites-derived EVs could significantly facilitate the aggressive property of ovarian cancer cells and boost the growth of ascites-derived organoids. Notably, miR-1246 and miR-1290 shuttled in malignant ascites-derived EVs were identified to promote the invasion and migration of ovarian cancer cells through regulating a common target RORα.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Ascite/diagnóstico , Ascite/genética , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
11.
Int J Cancer ; 151(2): 240-254, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218560

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is a highly aggressive and intractable neoplasm, mainly because of its rapid dissemination into the abdominal cavity, a process that is favored by tumor-associated peritoneal ascites. The precise molecular alterations involved in HGSOC onset and progression remain largely unknown due to the high biological and genetic heterogeneity of this tumor. We established a set of different tumor samples (termed the As11-set) derived from a single HGSOC patient, consisting of peritoneal ascites, primary tumor cells, ovarian cancer stem cells (OCSC) and serially propagated tumor xenografts. The As11-set was subjected to an integrated RNA-seq and DNA-seq analysis which unveiled molecular alterations that marked the different types of samples. Our profiling strategy yielded a panel of signatures relevant in HGSOC and in OCSC biology. When such signatures were used to interrogate the TCGA dataset from HGSOC patients, they exhibited prognostic and predictive power. The molecular alterations also identified potential vulnerabilities associated with OCSC, which were then tested functionally in stemness-related assays. As a proof of concept, we defined PI3K signaling as a novel druggable target in OCSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Ascite/genética , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases , Prognóstico
12.
Hereditas ; 159(1): 9, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090566

RESUMO

BACKGROUND: The goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence. The second-generation MAS products were assessed for impact on ascites phenotype and whether there were associated changes in important production traits. Previously, we used whole genome resequencing (WGR) to fine-map 28 chromosomal regions as associated with ascites phenotype in our experimental ascites broiler line (Relaxed, REL) based on a hypobaric chamber challenge. Genotypes for single nucleotide polymorphisms (SNPs) in mapped regions on chromosomes 2 and 22, were used for MAS in our REL line. After two generations, birds homozygous for the genotypes associated with resistance for both chromosomal regions were established. The MAS F2 generation was then compared to the REL line for ascites susceptibility and 25 production traits. RESULTS: Selection based on SNPs in the carboxypeptidase Q (CPQ, Gga2) and leucine rich repeat transmembrane neuronal 4 (LRRTM4, Gga22) gene regions resulted in a sex- and simulated altitude- dependent reduction of ascites incidence in two F2 cohorts of the MAS line. Comparisons of the F2 MAS and REL lines for production traits when reared at ambient pressure found no significant negative impacts for feed intake (FI), feed conversion ratio (FCR), or deboned part yields for either sex for two F2 cohorts. There were, however, improvements in the MAS for full-trial body weight gain (BWG), FCR, absolute and relative tender weights, and relative drumstick weight. CONCLUSIONS: These results validate the mapping of the 28 chromosomal regions and demonstrate that fine mapping by WGR is an effective strategy for addressing a complex trait; it also stands as the first successful SNP-based selection program against a complex disease trait, such as ascites. The MAS line is comparable and, in some instances, superior, in growth performance to the REL control while being more resistant to ascites. This study indicates that MAS based on WGR can provide significant breeding potential in agricultural systems.


Assuntos
Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas , Animais , Ascite/genética , Galinhas/genética , Fenótipo , Doenças das Aves Domésticas/genética
13.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613908

RESUMO

Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. In the early phase of OC detection, the current treatment and diagnostic methods are not efficient and sensitive enough. Therefore, it is crucial to explore the mechanisms of OC metastasis and discover valuable factors for early diagnosis of female cancers and novel therapeutic strategies for metastasis. Exosomes are known to be involved in the development, migration, and invasion of cancer cells, and their cargo could be useful for the non-invasive biopsy development. CD151- and Tspan8-positive exosomes are known to support the degradation of the extracellular matrix, and are involved in stroma remodeling, angiogenesis and cell motility, as well as the association of miR-24 and miR-101 with these processes. The objective of this study was to explore the relationship of these components of exosomal cargo, in patients with OC, to clarify the clinical significance of these markers in liquid biopsies. The levels of tetraspanins Tspan8+ and CD151+ exosomes were significantly higher in plasma exosomes of OC patients compared with healthy females (HFs). The relative levels of miR-24 and miR-101 in plasma exosomes of HFs were significantly higher than in plasma exosomes of OC patients, while the levels of these microRNAs in exosomes from plasma and ascites of ill females showed no difference. Our study revealed a strong direct correlation between the change in the ascites exosomes CD151+Tspan8+ subpopulation level and the expression levels of the ascites (R = 0.81, p < 0.05) and plasma exosomal miR-24 (R = 0.74, p < 0.05) in OC patients, which confirms the assumption that exosomal cargo act synergistically to increase cellular motility, affecting cellular processes and signaling. Bioinformatics analysis confirmed the involvement of CD151 and Tspan8 tetraspanins and genes controlled by miR-24-3p and miR-101 in signaling pathways, which are crucial for carcinogenesis, demonstrating that these tetraspanins and microRNAs are potential biomarkers for OC screening, and predictors of poor clinicopathological behavior in tumors.


Assuntos
Exossomos , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , MicroRNAs/metabolismo , Exossomos/metabolismo , Líquido Ascítico/metabolismo , Ascite/genética , Ascite/metabolismo , Neoplasias Ovarianas/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
14.
Cell Death Differ ; 29(3): 614-626, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845371

RESUMO

High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.


Assuntos
Ascite , Neoplasias Ovarianas , Ascite/genética , Ascite/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Medicina de Precisão , Esferoides Celulares/patologia
15.
Cancer Biomark ; 33(1): 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34511487

RESUMO

Ovarian cancer comprises the most lethal gynecologic malignancy and is accompanied by the high potential for the incidence of metastasis, recurrence and chemotherapy resistance, often associated with a formation of ascitic fluid. The differentially expressed ascites-derived microRNAs may be linked to ovarian carcinogenesis. The article focuses on a number of miRNAs that share a common expression pattern as determined by independent studies using ascites samples and with regard to their functions and outcomes in experimental and clinical investigations.Let-7b and miR-143 have featured as tumor suppressors in ovarian cancer, which is in line with data on other types of cancer. Although two miRNAs, i.e. miR-26a-5p and miR-145-5p, act principally as tumor suppressor miRNAs, they occasionally exhibit oncogenic roles. The performance of miR-95-3p, upregulated in ascites, is open to debate given the current lack of supportive data on ovarian cancer; however, data on other cancers indicates its probable oncogenic role. Different findings have been reported for miR-182-5p and miR-200c-3p; in addition to their presumed oncogenic roles, contrasting findings have indicated their ambivalent functions. Further research is required for the identification and evaluation of the potential of specific miRNAs in the diagnosis, prediction, treatment and outcomes of ovarian cancer patients.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Ascite/genética , Carcinogênese/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia
16.
Biomed Res Int ; 2021: 6287280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869767

RESUMO

Traditional pathogenic diagnosis presents defects such as a low positivity rate, inability to identify uncultured microorganisms, and time-consuming nature. Clinical metagenomics next-generation sequencing can be used to detect any pathogen, compensating for the shortcomings of traditional pathogenic diagnosis. We report third-generation long-read sequencing results and second-generation short-read sequencing results for ascitic fluid from a patient with liver ascites and compared the two types of sequencing results with the results of traditional clinical microbial culture. The distribution of pathogenic microbial species revealed by the two types of sequencing results was quite different, and the third-generation sequencing results were consistent with the results of traditional microbial culture, which can effectively guide subsequent treatment. Short reads, the lack of amplification, and enrichment to amplify signals from trace pathogens, and host background noise may be the reasons for the high error in the second-generation short-read sequencing results. Therefore, we propose that long-read-based rRNA analysis technology is superior to the short-read shotgun-based metagenomics method in the identification of pathogenic bacteria.


Assuntos
Ascite/genética , Infecções Bacterianas/genética , RNA Ribossômico/genética , Bactérias/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Análise de Sequência de DNA/métodos
17.
Sci Rep ; 11(1): 18032, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504124

RESUMO

The isolation of a patient's metastatic cancer cells is the first, enabling step toward treatment of that patient using modern personalized medicine techniques. Whereas traditional standard-of-care approaches select treatments for cancer patients based on the histological classification of cancerous tissue at the time of diagnosis, personalized medicine techniques leverage molecular and functional analysis of a patient's own cancer cells to select treatments with the highest likelihood of being effective. Unfortunately, the pure populations of cancer cells required for these analyses can be difficult to acquire, given that metastatic cancer cells typically reside in fluid containing many different cell populations. Detection and analyses of cancer cells therefore require separation from these contaminating cells. Conventional cell sorting approaches such as Fluorescence Activated Cell Sorting or Magnetic Activated Cell Sorting rely on the presence of distinct surface markers on cells of interest which may not be known nor exist for cancer applications. In this work, we present a microfluidic platform capable of label-free enrichment of tumor cells from the ascites fluid of ovarian cancer patients. This approach sorts cells based on differences in biomechanical properties, and therefore does not require any labeling or other pre-sort interference with the cells. The method is also useful in the cases when specific surface markers do not exist for cells of interest. In model ovarian cancer cell lines, the method was used to separate invasive subtypes from less invasive subtypes with an enrichment of ~ sixfold. In ascites specimens from ovarian cancer patients, we found the enrichment protocol resulted in an improved purity of P53 mutant cells indicative of the presence of ovarian cancer cells. We believe that this technology could enable the application of personalized medicine based on analysis of liquid biopsy patient specimens, such as ascites from ovarian cancer patients, for quick evaluation of metastatic disease progression and determination of patient-specific treatment.


Assuntos
Ascite/diagnóstico , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ovarianas/diagnóstico , Proteína Supressora de Tumor p53/genética , Ascite/genética , Ascite/metabolismo , Ascite/patologia , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fenômenos Biomecânicos , Separação Celular/instrumentação , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Modelos Biológicos , Reação em Cadeia da Polimerase Multiplex , Mutação , Invasividade Neoplásica , Células Neoplásicas Circulantes/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Medicina de Precisão , Proteína Supressora de Tumor p53/metabolismo
18.
Gynecol Oncol ; 162(3): 720-727, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34454680

RESUMO

OBJECTIVE: Malignant ascites is a common clinical feature of ovarian cancer and represents a readily accessible sample of tumour cells and tumour DNA. This study aimed to characterise the cell-free DNA (cfDNA) in ascites in terms of its size profile, stability and cell-free tumour DNA (cftDNA) content. METHODS: Cell spheroids, loose cells and cell-free fluid was collected from ascites from 18 patients with ovarian cancer. cfDNA was isolated and assessed for size by electrophoresis, concentration by fluorometry,cftDNA content by methylation specific qPCR of HOXA9 and IFFO1 promoter regions and by targeted sequencing. Stability was assessed after ascites fluid was stored at 4 °C for 24 and 72 h before fractionating. RESULTS: The concentration of cfDNA in ascites ranged from 6.6 to 300 ng/mL. cfDNA size distribution resembled blood plasma-derived cfDNA, with major peaks corresponding to mono- and di-nucleosome DNA fragments. High molecular weight cfDNA was observed in 7 of 18 patients and appeared to be associated with extracellular vesicles. IFFO1 and HOXA9 methylation was proportionately higher in cfDNA than spheroid- and loose-cell fractions and was not observed in healthy primary cells. Variant allele frequency was highest in cfDNA compared to single cells and spheroids from ascites. Though cancer cell numbers in ascites declined to near zero in recurrent ascites from one patient undertaking chemotherapy, cftDNA could still be sampled. cfDNA size, concentration and tumour content was stable over 72 h. CONCLUSION: cfDNA in ovarian cancer ascites demonstrates inter-patient variability, yet is consistently a rich source of cftDNA, which is a stable substrate. This supports the wider clinical use of ascites in the molecular analysis of ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/sangue , DNA Tumoral Circulante/sangue , Neoplasias Ovarianas/sangue , Adulto , Ascite/sangue , Ascite/genética , Ascite/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , DNA Tumoral Circulante/genética , Feminino , Humanos , Biópsia Líquida , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
19.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359872

RESUMO

Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.


Assuntos
Ascite/imunologia , Antígeno CD56/imunologia , Cistadenocarcinoma Seroso/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apirase/genética , Apirase/imunologia , Ascite/genética , Ascite/patologia , Antígeno CD56/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-15/genética , Interleucina-15/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Células K562 , Células Matadoras Naturais/patologia , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
Liver Int ; 41(12): 2944-2953, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309184

RESUMO

BACKGROUND & AIMS: Tolvaptan, vasopressin V2-receptor antagonist, has been used for patients with difficult-to-treat ascites in Japan. In this study, we conducted a genome-wide association study (GWAS) in the Japanese population to identify genetic variants associated with tolvaptan's efficacy for patients with hepatic ascites. METHODS: From 2014 through 2018, genomic DNA samples were obtained from 550 patients who were treated with tolvaptan. Of those, 80 cases (non-responder; increase of body weight [BW]) and 333 controls (responder; >1.5 kg decrease of BW) were included in the GWAS and replication study. RESULTS: Genome-wide association study showed 5 candidate SNPs around the miR818, KIAA1109, and SVEP1 genes. After validation and performing a replication study, an SNP (rs2991364) located in the SVEP1 gene was found to have a significant genome-wide association (OR = 3.55, P = 2.01 × 10-8 ). Multivariate analyses showed that serum sodium (Na), blood urea nitrogen (BUN) and SVEP1 SNP were significantly associated with the response (OR = 0.92, P = .003; OR = 1.02, P = .02 and OR = 3.98, P = .000008, respectively). Based on a prediction model of logistic regression analysis in a population with the rs2991364 risk allele, the failure probability (=exp (score: 22.234 + BUN*0.077 + Na*-0.179) (1 + exp (score)) was determined for the detection of non-responders. Assuming a cutoff of failure probability at 38.6%, sensitivity was 84.4%, specificity was 70% and AUC was 0.774. CONCLUSION: SVEP1 rs2991364 was identified as the specific SNP for the tolvaptan response. The prediction score (>38.6%) can identify tolvaptan non-responders and help to avoid a lengthy period of futile treatment.


Assuntos
Ascite , Estudo de Associação Genômica Ampla , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Ascite/tratamento farmacológico , Ascite/genética , Benzazepinas , Moléculas de Adesão Celular , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Tolvaptan/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...